SOUTH AFRICAN POULTRY ASSOCIATION

CODE OF PRACTICE 2012

Pullet Rearing and Table Egg Production
FOREWORD

This is the latest version [as per the date shown below] of the Code of Practice compiled by the South African Poultry Association.

All members of SAPA, by agreeing to be members of SAPA, bind themselves to follow this Code which, as with previous versions, is established as a minimum set of standards for local poultry production.

Members are encouraged to use higher standards wherever they see fit and none of these standards trump any local laws or regulations.

This Code has been drawn up by the Poultry Welfare Working Group of SAPA’s Technical Committee.

No Code such as this can be seen as a final document. As new knowledge is defined by science this Code will be amended.

Comments and advice from members will keep this document alive and relevant. You are all invited to comment as you see fit.

The role of the poultry industry in feeding the nation is likely to grow due to the nutritious and affordable nature of our products.
Index

1 Background and Introduction ... 4
2 Pullet Rearing and Egg Production Systems .. 6
 2.1 Introduction ... 6
 2.2 Housing of Rearing Pullets in Cage Systems .. 6
 2.3 Housing of Rearing Pullets in Floor Rearing Systems ... 7
 2.4 Housing of Birds in Layer Cage Systems ... 7
 2.5 Housing of birds in Free Range and Barn Egg Systems ... 8
 2.5.1 Barn System .. 9
 2.5.2 Free Range System ... 9
 2.5.3 Internal Environment .. 9
 2.5.4 External Environment .. 10
3 Preparation of Poultry Houses .. 11
 3.1 Cleaning, Disinfection and Sanitary Break .. 11
 3.2 House Preparation ... 11
4 Management Practices .. 11
 4.1 Receiving of Stock ... 11
 4.2 Temperature Control .. 12
 4.3 Ventilation Control ... 12
 4.4 Light Control .. 13
 4.5 Feed ... 13
 4.6 Drinking Water ... 13
 4.7 Beak Trimming ... 14
 4.8 Supervision .. 14
 4.9 Access to External Environment in Free Range Production .. 15
 4.10 Transporting of Birds ... 15
 4.11 Egg Collection .. 16
 4.12 Moulting of Birds ... 17
 4.13 Disposal of End of Lay Birds ... 17
5 Health Control ... 17
 5.1 The Establishment .. 17
 5.2 Flock Health ... 18
 5.3 Records ... 18
 5.4 Vaccination ... 18
 5.5 Blood testing ... 19
 5.6 Parasite, Vermin and Insect Control .. 19
 5.7 Biosecurity – People ... 19
6 Appendix 1 .. 20
7 Appendix 2 .. 24
8 Appendix 3 .. 26
1 Background and Introduction

This Code of practice has been compiled by the South African Poultry Association as an objective
guide for all poultry and poultry products produced in South Africa and it is an endeavor to lay down
accepted norms for the poultry industry, incorporating various legal requirements where necessary
and applicable.

Where possible the Code provides defined minimum standards for the wellbeing of poultry in
commercial operations, research and educational facilities. The recommendations are to be used as
a guide and do not necessarily consider all possible conditions.

The minimum standards outlined in this Code are intended to assist producers and people involved
in the care and management of poultry to adopt standards of husbandry that are acceptable in the
light of current knowledge and changing attitudes. It is intended to serve as a guide for people
responsible for the welfare and husbandry of domestic poultry and recognizes that the basic
requirement for welfare of poultry is a husbandry system appropriate for their physiological needs.

The Code considers safe and wholesome food for human consumption to be of the highest priority
and therefore fully supports the implementation of applicable measures to comply with the
requirements for safe food of poultry origin, as approved by the relevant Health Authorities and
Regulations.

Adequate facilities and resources must be available to supply proper housing, the supply of quality
feed and water, attendance to sick and injured chickens and all else to ensure the wellbeing of the
animals. Financial costs should not be a reason for neglecting of chickens that are obviously in
distress or for failing to secure prompt and appropriate medical treatment or other care which may
be necessary.

The Code emphasizes that, whatever the form of husbandry, managers, employees and others
responsible for the day to day needs of the stock have a responsibility to care for the birds under
their control. The importance of good stockmanship in animal welfare cannot be over-emphasized.
Persons responsible for the care of poultry should be well trained, experienced and dedicated. Staff
should be encouraged to undertake appropriate training in poultry management and husbandry.
Knowledge of the normal appearance and behavior of the birds under their control is essential for
the stock to be treated effectively and efficiently and with consideration.

Assistance in the establishment of poultry farms and production facilities and on the management
of poultry should be obtained from qualified advisers with experience in private or government
employment. Veterinary advice should also be sought when birds are in ill-health.
The Code is based on practical and scientific knowledge and technology in poultry production available at the time of publication but does not replace the need for experience and commonsense in the husbandry of domestic poultry.

The Code does not substitute any regulatory requirements and should where applicable, be read and applied in conjunction with all relevant laws, by-laws, regulations and compulsory specifications including the following:

- Animal Improvement Act (Act no 62 of 1998)
- Animal Disease Act (Act no 35 of 1984)
- Animal Protection Act (Act no 71 of 1962)
- Meat Safety Act (Act no 40 of 2000)
- Agriculture Products Standards Act (Act 119 of 1990)
- Foodstuffs, Cosmetic and Disinfectant Act (Act 54 of 1972)
- National Health Act (Act 62 of 2003)
- Occupational and Safety Act (Act 85 of 1993)
- Fertilizer, Farm Feeds, Agriculture Remedies and Stock Remedies Act (Act 36 of 19947)
- Foodstuffs, Cosmetic and Disinfectant Act (Act 54 of 1972)
- Livestock Brands Act (Act 25 of 1977)
- Sterilization Facility Act (Act 36 of 1947)
- Water Treatment Chemicals for Use in the Food Industry (SANS 1827)
- Cleaning Chemicals for Use in the Food Industry (SANS 1828)
- Disinfections and Detergent – Disinfections for use in the Food Industry (SANS 1853)
- Application of Pesticides in Food-Handling, Food-Processing and Catering Establishments (SANS 10133)
- Food Hygiene Management (SANS 1049)
- Food Safety Management Systems – Requirements for Organizations throughout the Food Chain (ISO 22000)
- Requirement for HACCP Systems (SANS 10330)
2 Pullet Rearing and Egg Production Systems

2.1 Introduction

This section covers the systems used in rearing commercial pullets from day old till point of lay for the production of commercial eggs and egg products. It also covers the systems for keeping birds in cages as well as free range and barn systems for the production of eggs for domestic consumption as well the use in the production of egg products.

Poultry producers should be aware of the responsibility to farm with disease free birds since the eggs produced should at all times are fit for human consumption. An effective program should be in place to prevent infectious and vertically transmittable diseases being transmitted within the poultry production chain and especially diseases and pathogens which could affect consumers of eggs and egg products.

Staff shall be able to understand and accept responsibility to prevent unnecessary suffering of birds in their care. Operators shall be satisfied that staff responsible for birds has the skills necessary to perform any required procedure without causing suffering.

2.2 Housing of Rearing Pullets in Cage Systems

The space guidelines for pullet rearing cages are set out in Table 2.1.

<table>
<thead>
<tr>
<th>Age (Weeks)</th>
<th>Weight (g)</th>
<th>Cm² per bird</th>
<th>Feed Trough (cm/bird)</th>
<th>Water Nipples (Birds/nipple)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 6</td>
<td>500</td>
<td>150</td>
<td>2.25</td>
<td>15*</td>
</tr>
<tr>
<td>7 – 18</td>
<td>1450</td>
<td>300</td>
<td>4.5</td>
<td>8*</td>
</tr>
</tbody>
</table>

*Birds must have access to at least two nipple drinkers

Space requirements increase as the birds approach maturity.

Houses and Cages shall be designed to provide chickens with a safe environment.

Cage height shall permit standing chickens free head movement.

The cage doors shall allow for easy insertion and removal of birds.

Cage floors shall not cause any injury or deformity during the rearing of pullets.
Cage floors shall preferably be covered with temporary supportive flooring such as paper or matting for the chicks during the early brooding period.

Chicken house flooring shall allow for effective cleaning and disinfecting, preventing significant buildup of parasites and other pathogens. Where possible the floor should be concrete that is well maintained.

2.3 Housing of Rearing Pullets in Floor Rearing Systems

Where commercial pullets are reared in conventional floor systems the density as per Table 2.2 shall apply.

Table 2.2: Space Requirement for Commercial Layer Type Birds being rearing in floor systems

<table>
<thead>
<tr>
<th>Age (Weeks)</th>
<th>Weight (g)</th>
<th>Hens (birds/m²)</th>
<th>Feed Trough (cm/hen)</th>
<th>Water Trough (cm/hen)</th>
<th>Nipple Drinkers (Hens/nipple)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 6</td>
<td>500</td>
<td>24</td>
<td>2.5</td>
<td>1.25</td>
<td>20</td>
</tr>
<tr>
<td>7 – 20</td>
<td>1450</td>
<td>12</td>
<td>3.5</td>
<td>1.25</td>
<td>12</td>
</tr>
</tbody>
</table>

Space requirements increase as the birds approach maturity.

The houses shall be designed to provide chickens with a safe environment.

The house floors shall preferably be concrete to facilitate cleaning and good hygiene control.

Round tube or pan feeders could be used and as a rule 3 feeders of 35 cm diameter would apply for birds up to 18 weeks of age.

Chicken house flooring shall allow for effective cleaning and disinfecting, preventing significant buildup of parasites and other pathogens. Where possible the floor should be concrete that is well maintained.

Bedding of suitable quality should cover the entire floor area at a depth of around 5 cm to allow for dilution of faeces.

2.4 Housing of Birds in Layer Cage Systems

Layers in intensive egg production systems are to be kept in specially designed cages in which birds are safe and in which they have free access to feed and water.

The space guidelines for pullet rearing cages are set out in Table 2.3.
Table 2.3: Space Requirement for Commercial Layer Type Birds kept in cages

<table>
<thead>
<tr>
<th>Age (Weeks)</th>
<th>Weight (g)</th>
<th>Cm² per bird</th>
<th>Feed Trough (cm/bird)</th>
<th>Water Nipples (Birds/cup or nipple)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 weeks plus</td>
<td>1500 g plus</td>
<td>450</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

*Birds must have access to at least two nipple drinkers

Houses and Cages shall be designed to provide chickens with a safe environment.

Cage height shall permit standing chickens free head movement.

The cage doors shall allow for easy insertion and removal of birds and be free of protrusions permitting the removal of birds without causing injury. Doors shall not be less than 20 cm wide and 20 cm high.

Cage floors shall not cause any injury or deformity.

The cage floor shall allow eggs to roll out freely without getting stuck or damaged

Chicken house flooring shall allow for effective cleaning and disinfecting, preventing significant buildup of parasites and other pathogens. Where possible the floor should be concrete that is well maintained.

Escapee birds should not be placed into cages which already contain the correct number of birds.

2.5 Housing of birds in Free Range and Barn Egg Systems

Birds in these systems should be able to express the five basic freedoms identified by international research. These freedoms require that livestock are:-

- Free from hunger and thirst via the availability of fresh water and the appropriate feed.
- Free from abnormal discomfort via the provision of adequate shelter.
- Free from abnormal pain, injury or disease via the provision of appropriate prevention or alternatively, rapid diagnosis and treatment, of normal pathological conditions.
- Allowed to express natural behavior by providing sufficient space in suitable facilities and in the company of the animals' own kind.
- Provided with conditions and care which avoid undue suffering and thus permit freedom from fear and distress.

Poultry producers involved in keeping birds in free range and barn systems should be aware of the responsibility to produce eggs that at all times are fit for human consumption. An effective program should be in place to prevent infectious and vertically transmittable diseases being transmitted.
within the poultry production chain and especially diseases and pathogens which could affect consumers of eggs and egg products.

Staff shall be able to understand and accept responsibility to prevent unnecessary suffering of birds in their care. Operators shall be satisfied that staff responsible for birds has the skills necessary to perform any required procedure without causing suffering.

Free range birds should never be confined to cage production systems

2.5.1 Barn System

Birds in barn systems are free to roam within the confines of a shed. The floor may be based on litter and/or other material such as slats or wire mesh.

2.5.2 Free Range System

Birds in free range system are housed in similar sheds as barn systems but have access to an outdoor range as well.

2.5.3 Internal Environment

The space guidelines for the poultry shed used in free range and barn systems are set out in Table 2.4.

Table 2.4: Space Requirement for Poultry Sheds used for Free Range and Barn Egg Production

<table>
<thead>
<tr>
<th>Age (Weeks)</th>
<th>Birds/m²</th>
<th>Feed Trough (cm/bird)</th>
<th>Pan or Tube Feeder (Birds/feeder)</th>
<th>Water Trough (cm/bird)</th>
<th>Bell Drinker (Birds/drinker)</th>
<th>Water Nipples (Birds/cup or nipple)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>10</td>
<td>5</td>
<td>40</td>
<td>1.25</td>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>

The chicken house must be so constructed that it provides for the welfare needs of the birds, whilst simultaneously providing protection from inclement weather conditions and both physical and thermal discomfort.

Whilst concrete floors are desirable, these are not mandatory, provided that whatever flooring is used allows for effective cleansing.

Where open-type housing structures in excess of 6 meters wide are used, provision should be made for ridge openings to facilitate ventilation. Mechanical assistance to natural ventilation (e.g. fans) is an acceptable practice.

Where housing is predominantly enclosed, ventilation by fans with a minimum airflow of 8 cubic meters per hour per adult hen is required.
Litter must be provided on at least 33% of the floor area. Such litter must be of sufficient quality and quantity to allow for the proper dilution of droppings and to allow birds to dust bathe.

Stocking densities must be adequate to accommodate the birds’ normal behavior. A maximum stocking density of 10 adult hens per square meter of available floor space is permitted. Such floor space shall exclude the area occupied by the egg collection/service area and in addition, shall exclude the area occupied by the enclosed portion of nest boxes where effective access to the area directly below is prevented.

In houses with appropriate perching/roosting facilities, stocking densities may be increased to 12 birds per square meter. Such perches must be provided at not less than 15 cm per hen and must incorporate a gap on either side of no less than 1.5 cm in order to allow hens to grip the perches without injury to their claws. For the purposes of interpretation, perches will include the alighting rail immediately in front of nest boxes (if applicable).

Adequate nesting facilities must be provided (egg production only) in order to discourage birds from laying eggs on the floor. Where individual nest boxes are provided, this should not be less than 1 nest per 8 hens. Where communal nests are provided, this should not be less than 1 square meter nest floor per 125 adult hens.

A lighting system for the provision of a minimum period of 9 hours continuous light in each period of 24 hours must be provided. Such light will either be artificial or via access to daylight. A minimum light intensity of 10 lux throughout the house during this time must be maintained. A minimum period of 8 hours continuous darkness per 24-hour cycle must also be provided in order to accommodate the birds’ requirement for adequate rest.

If using chain, trough or box feeders, which can be accessed from both sides, then a maximum of one adult hen per 5 cm of feeder length, may be housed. If only one side is accessible, then 10 cm per hen must be provided. If pan or tube feeders are used, a maximum of 40 adult hens per feeder may be housed.

2.5.4 External Environment

These external environment conditions would apply to Free Range and not Barn Systems

The stocking rate of the external range should not exceed 5 birds per square meter. It is recognized that the prevalence of livestock theft is a reality, which restricts the provision of more extensive ranges.

The range must be maintained in a manner that allows for a minimum of 50% living vegetation present at all times. It is acknowledged that certain climatic conditions and locations make it difficult for this vegetation to always be green, but that this should be the objective.

The practice of rotational grazing is a desirable management tool, which allows for the active management of damaged ground, as well as minimizing the risk of a build-up of parasites.
External shade by way of either trees or artificial structures must be provided at the rate of 4 square meters shade per 1,000 birds.

In locations where overhead predators frequently occur, provision must be made for outside cover to reduce stress reactions from such sightings.

Fencing should be adequate to provide protection from indigenous terrestrial predators. Domestic animals such as dogs and cats must not be allowed into the enclosed range area.

3 Preparation of Poultry Houses

3.1 Cleaning, Disinfection and Sanitary Break

Establishment of a cleaning regime after completion and depopulation of a previous flock will help in avoiding future health problems.

Attention should be paid to thorough cleaning of the buildings following depopulation and should include complete removal and disposal of litter from the poultry building and surrounding area.

Following cleaning and disinfecting of the building (including all equipment contained within the building) a sanitary break will assist in avoiding any carry-over of disease to the next flock.

3.2 House Preparation

Preparation of the building and equipment for the next batch of chickens should always be complete and all equipment fully maintained and operational in time to receive the next group of birds.

4 Management Practices

4.1 Receiving of Stock

Before receiving stock the building should have been prepared in accordance with above.

The equipment should be fully serviced and operational and in the case of receiving day old chicks, the building should have been pre-warmed to the required temperature.

Optimum temperature varies for different species, breeds and age. The operators should be aware of the specific requirement for the species/breed under their control.

Birds should have been transported in accordance to the guide below.

Birds shall be removed carefully from the transport containers. Older birds should be handled by supporting them under the body or grabbing by both legs and shall not be carried by more than three birds in one hand by holding both legs.

Any birds that have been injured during the transport of the birds must be placed in a separate area to recover, or if impractical or recovery is unlikely, must be humanely killed.
The appropriate number of birds shall be placed to comply with the density guides above.

For flocks to qualify for Free Range or Barn production classification, layers must be introduced to the Free Range or Barn system at no later than 130 days of age.

4.2 Temperature Control

Subject to housing insulation, breed and seasonal variations supplementary heat at gradual decreasing levels is to be applied when brooding chicks until no longer required.

Bird behavior is the best indicator of bird comfort.

As birds mature and become fully feathered, they can withstand and adapt to wider temperature fluctuation (5 to 33 °C). Where extreme high temperatures are experienced, especially under climatic conditions of high humidity, procedures such as increased ventilation and air flow over birds, evaporative cooling equipment, reduced stocking density and supply of cool water, should be considered to deal with such extremes.

Low temperature conditions should not be overcome at the expense of minimum rates of ventilation.

Recognizing the extremes possibilities of weather conditions, house conditions within temperature range of 5 to 33°C and maximum relative humidity of 80% should be aimed at for fully feathered birds.

It is advisable to have a temperature alarm system installed to warn operators of high and low temperature conditions for corrective action to be taken.

It is advisable to record daily maximum and minimum house temperature levels.

4.3 Ventilation Control

A minimum rate of ventilation is required at all times to provide fresh air and to remove moisture and other metabolic gases from the building.

This minimum rate of ventilation would be dependent on the biomass in the building and the operator shall be aware thereof.

With forced ventilation systems the operator shall be fully trained in how to set up and control the ventilation system.

With open sided buildings the operator shall be fully trained in how to set the curtains or whatever natural ventilation control exists under varying climatic conditions.

Carbon dioxide levels should be kept below 3000 ppm (3%).
The presence of ammonia is usually a reliable indicator of build-up of noxious gasses. A level of 10 to 15 ppm of ammonia can be detected by smell and once this level is reached, corrective action should be taken.

Mechanical ventilated buildings should have a back-up power supply or alternative emergency ventilation systems linked to an alarm system to warn operators of power failure.

4.4 Light Control

Chicks are started at higher light intensity around (20 lux) for the first couple of days in order to learn to find the feed and drinker systems.

Thereafter commercial rearing pullets are reared on varying light intensity down to 2 lux depending on the housing conditions and breed.

The light intensity should be adequate to allow for birds to feed normally and allow for thorough inspection of the flock.

A minimum artificial light intensity of 10 lux shall be aimed for within any given point in systems where adult birds are kept for the production of table eggs.

Sudden changes in intensity should be avoided as this could lead to flight reaction in some strains.

Various light programs and light intensity for commercial layer birds are prescribed by suppliers of breeding stock and the operator shall be aware of the appropriate program to be applied.

Notwithstanding the above the total light period (artificial plus natural light in open sided houses) shall not exceed 20 hours in the 24 hour day.

4.5 Feed

Newly hatched chicks must be provided with food within 48 hours of hatching.

Commercial layer pullets in rear would preferably have free access to fresh feed.

Birds should receive a diet that contains adequate nutrients to meet the daily requirement for good health and vitality and in sufficient daily quantities to enable an increase in body weight gain and production which is in accordance with the breed specifications.

Feed should preferably be stored in closed containers and access for vermin and wild birds should not occur.

4.6 Drinking Water

Newly hatched chicks should receive water within 48 hours of hatching but sooner during hot weather.

Birds should have access to sufficient potable water to meet their daily physiological requirements.
In cage rearing birds should have access to a minimum of two nipple drinkers.

Water should be below a temperature at which birds refuse to drink.

The water should be regularly tested for chemical content as well as microbial contamination.

In pens containing less than 100 birds, access to at least two drinkers must be provided.

Where conditions so dictate, adequate provision must be made for the continuous supply of water in sub-zero temperature.

4.7 Beak Trimming

The practice of professionally performed beak-trimming is internationally recognized as being a humane alternative to the appalling effects of cannibalism. The continuing need for beak-trimming is being constantly reassessed and it is accepted that as soon as the causes and possible alternate means of preventing cannibalism have been identified, the phasing out of this practice will be a welcome development.

When beak trimming is to be applied it should be done at as young an age as possible.

Beak trimming must be performed only by a trained operator who is completely competent in the procedures using equipment that has been properly maintained.

4.8 Supervision

Bird supervision should only be performed by adequately trained staff.

Birds should be inspected at least twice every 24 hours and corrective action taken to correct any husbandry deficiencies detected.

Although the frequency and level of inspection should be in accordance with the welfare risk of the birds, a thorough inspection should occur at least once a day for every flock once the critical period of brooding has been completed.

Inspection frequency should be increased during periods of adverse conditions such as high or low temperature or ill health.

During such checks particular attention should be given to bird comfort and proper functioning of all equipment. Any malfunctioning equipment should be attended to and corrected immediately.

In floor systems any wet litter should be removed immediately and corrective action taken as to the cause of the wet litter. Litter should not be allowed to become caked and hard.

In cage systems manure will be removed in accordance with the particular system in use.

During flock inspection any sick or injured birds are to be treated promptly or killed humanely by dislocating the neck by personnel who have been trained to do so.
Dead chickens are to be removed daily and disposed of in an appropriate manner.

Flock supervision should include periodic checks for the presence of internal and external parasites. Should such parasites be detected, corrective treatment must be administered immediately.

Live chickens with clinical signs of disease or flocks with abnormal high mortality rates shall be handed over to a veterinarian or diagnostic laboratory for diagnosis and recommendations for treatment should be followed immediately.

The use of antimicrobials is covered more comprehensively in Appendix 3.

In the event where administration of a suitable drug for strategic treatment of a disease is necessary, only drugs registered in terms of the relevant Acts will be used and the prescribed withdrawal period that may be applicable will be adhered to.

The use of antimicrobials is covered more comprehensively in Appendix 3.

4.9 Access to External Environment in Free Range Production

In Free Range production, birds must have access to the external range for a minimum of 6 hours per day, during natural daylight hours. It is accepted that it is counter-productive for birds to be outside during periods of extreme weather. Routine external access may therefore be restricted at such times.

In Free Range production, access to external range should be provided by means of doors, gates or popholes. When popholes are used these should be at least 35 cm high and 40 cm wide and allowance must be made for at least 2 meter per 1000 birds.

4.10 Transporting of Birds

When commercial pullets close to onset of lay are to be moved from rearing to laying facilities, the following principles in birds transfer shall be applied:-

The driver of the vehicle transporting poultry shall be a responsible person with a valid and appropriate driver's license.

The drivers of vehicles used for transporting birds shall be trained in the welfare issues affecting poultry during transportation.

The driver shall have telephone numbers of the owner of the vehicle and birds as well as appropriate emergency telephone numbers that may be required at any time during a journey and the means to contact the designated persons who can assist in an emergency.

Drivers shall at all times be able to perform their duties in an expert and responsible manner.

Drivers shall not handle a vehicle in a manner that might cause the transported animals to slip, fall or suffer injury. The safety and welfare of the animals shall never be ignored or disregarded.
Chickens shall be transported in roadworthy vehicles, which are suitable for the transport of poultry.

Stops en-route shall only be made when absolutely necessary. When stops are made in hot weather, the vehicle must be parked in the shade where possible or for very short periods when in the sun.

In the case of a truck breakdown which could result in a subsequent rise in temperature in the load space, the load shall be off-loaded if the system permits or at least partially off-loaded so as to increase the space between crates or trolleys to accommodate the circumstances.

In the case of an accident the extent of the accident and particular circumstances will dictate the appropriate action to be taken.

Vehicles used for the transportation of live poultry over long distances must be constructed in such a manner so as to protect the poultry against adverse weather conditions during transportation as well as a breakdown.

The chickens should be loaded into clean standardized transporting crates (770 mm long x 500 mm wide x 300 mm high) or purpose-made wire mesh cages in trolleys.

All the containers should have a lid or door that can be secured to prevent the chickens from escaping.

Birds should be caught individually and handled by both legs or fully support of the body. Not more than 3 birds per hand may be carried per person at any one time. Birds should not be thrown in the air between handlers prior to being placed in crates.

The containers should prevent protrusion of the head, wings and legs. Handlers should ensure that no body part is trapped outside the crate when the crates are loaded.

The number of chickens per crate should correspond to the floor space and body size of the transported chickens, with due regard to environmental conditions and duration of transport. The maximum density should not exceed 55kg body mass per square meter.

The journey should not exceed 24 hours.

Portable transporting crates with live chickens should preferably be moved in a horizontal position. Crates should not be thrown or dropped.

A tie-down device preventing containers from overturning must be used.

4.11 Egg Collection

Eggs produced by all the production systems are intended to be used for human consumption and should be handled accordingly.
Eggs should be collected regularly from the system (at least once per day) and placed in clean and dry handling equipment.

In the case of cage systems the cage floors and the egg handling system should be kept clean.

In Free Range and Barn systems the nest boxes and nest material should be kept clean.

Eggs are to be handled gently so as to avoid fine cracks.

Dirty, broken, cracked leaking and any other abnormal eggs should be collected in separate equipment and should not be used for human consumption.

Eggs should be stored in appropriate holding rooms in which temperature fluctuation is kept to the minimum.

4.12 Moulting of Birds

Methods of moult inducement which deprive birds of water for more than 24 hours or feed for more than 48 hours shall not be allowed.

The use of high fiber diets is acceptable provided that birds consume at least 40 to 60 g per day.

Induced moulting shall only be carried out on healthy birds under close management supervision and conditions that will not cause undue stress.

Moulting shall not be artificially induced in any Free Range or Barn production.

4.13 Disposal of End of Lay Birds

The disposal of end of lay birds is covered more comprehensively in the Live Bird Sales Code of Conduct (Appendix 1).

Of particular note for producers is to preferably conduct live bird sales away from the layer farm, especially in the case of multi aged operations and not allow live bird buyers onto or close to the farming operations.

5 Health Control

5.1 The Establishment

The farming facilities should preferably be well separated and isolated from other poultry.

The building should preferably be single purpose entity and ideally operated on an all-in, all-out replacement basis with a single age group.

The farm or site should be fenced off by at least a stock fence and no grazing animals should be allowed within the perimeters of such fence.
The area immediately surrounding the poultry houses should be free of vegetation and debris and if grass is grown between buildings, it should be kept short.

Appropriate biosecurity measures for all staff and visitors entering the premises, which could include showering and changing of clothes should be adopted.

Change of clothes is regarded as being the absolute minimum measure to be applied for pullet rearing farms.

Buildings should be free of vermin and not accessible to wild birds.

Vermin and wild birds should not have access to feed storage.

Domestic animals should not be allowed access to the fenced area.

5.2 **Flock Health**

Management should have ready access to a veterinarian who is experienced in dealing with poultry.

The environment provided must be conducive to good flock health as well as providing the necessary protection from pain, injury and disease.

Operators responsible for the care and wellbeing of poultry should be aware of the signs of ill-health or distress and corrective action implemented immediately.

Where causes of ill-health or distress cannot be identified professional advice from veterinarians or other trained and qualified advisers should be sought.

All medication should be prescribed by a qualified veterinarian and such medication should be applied strictly in accordance with manufacturer’s instruction unless otherwise advised by the veterinarian concerned.

The use of antimicrobials is covered more comprehensively in Appendix 3.

Birds with an incurable sickness or deformity should be removed from the flock and killed humanely by a competent person properly trained to do so.

5.3 **Records**

Vaccination, health and any laboratory records shall be kept for all flocks.

Such records shall be kept for inspection for the normal expected lifetime of the birds or flock.

5.4 **Vaccination**

Producers involved in the production of commercial pullets intended for the use in producing eggs for human consumption should operate an effective program as advised by a veterinarian with
poultry experience to prevent outbreaks of infectious disease, especially diseases and pathogens which could affect humans.

Vaccinations and other treatments prescribed by a veterinarian shall only be undertaken by properly trained and skilled staff.

5.5 Blood testing

Regular serological testing of flocks as may be prescribed by a qualified veterinarian is advisable in disease control.

The health status, serological test results and vaccination program applied should be made available to the customers of farms producing point of lay pullets which are intended to be used for the production of table eggs.

5.6 Parasite, Vermin and Insect Control

Birds kept in intensive systems are often subjected to a buildup of parasites. Appropriate control measures as advised by a veterinarian should be in place to combat such infestation.

Birds should be constantly monitored for other internal parasites such as worms and corrective treatment measures taken as prescribed by a veterinarian.

A well planned vermin control program should be in place taking in account particular circumstances of the operation.

Fly breeding should be controlled to the very minimum.

The cleaning and disinfecting program followed at the end of the cycle should incorporate the application of an insecticide to control litter beetle infestation.

5.7 Biosecurity – People

Biosecurity on farms is of the utmost importance to ensure healthy flocks perform according to the required standards and to prevent transition of diseases to other farms within the industry.

People movement is one of the main means of transmitting disease between flocks or farms. There are different aspects of biosecurity relating to people movement in poultry operations including physical biosecurity.

Appendix 2 sets out a general practice to be followed.
6 Appendix 1
LIVE BIRD SALES CODE OF CONDUCT

INTRODUCTION

The purpose of this document is to regulate and improve conditions relating to the sale and handling of live birds which may include culls during production, end of lay culls and live broiler sales.

It is intended that all SAPA members who are live bird sellers will display a poster sized copy of this code at their sale premises and that a copy of this code will be given to live bird buyers with each live bird sale. Where there is a fixed purchase arrangement between a live bird buyer and the seller it is not necessary to hand out a copy of this Code with each sale but only initially and whenever the Code is amended. The sellers will also hand out copies of the NSPCA pamphlets to their customers for onward transmission to the live bird retailers.

The live bird sellers are also required to keep a register of birds sold with the register containing the quantity of birds sold, the purchaser’s details (sufficient that it is possible to contact the buyer) and the health records/status of the birds sold (defined as copies of all records held on farm).

Invoices and the normal health records for birds should suffice for this register as long as they contain the information in the attached declaration else this declaration may be used. Initially this information should be supplied quarterly and SAPA will collate this information and compile a national register of live bird buyers. SAPA will thereafter, in consultation with the NSPCA, use it to attempt to educate the live bird buyers and their customers on proper animal husbandry practices at their lairages. Once we have practical experience of the use of this Code the frequency of submission might be reduced.

As a general bio-security condition it is recommended that for all multi age sites live bird sales take place from a dedicated sale area outside of the bio secure zone and that no live bird buyers are allowed into the production facilities. In the case of single age sites the additional costs and welfare risks of multiple movements should be weighed up against the bio-security risks.

The requirement for vaccination and health declarations may seem onerous but as these birds are transported across provincial boundaries it is in the industry’s own interest to better manage the transmission of diseases around South Africa.

This code is designed to apply to both the sale of live broilers, culls during production, depleted broiler and layer breeders and depleted commercial laying hens. As the weight of broiler breeders and commercial laying hens and layer breeders differs considerably there are separate specifications where applicable to allow for these weight differences.
CODE

1. All paperwork should be completed prior to catching and loading so that the vehicle may leave the premises immediately after loading is complete.

2. With each batch of birds the depleted bird buyer will receive a health declaration stating that the birds originate from a flock which conforms to the requirements as per the following DAFF approved documents:
 - Movement control protocol in case of an outbreak of Newcastle disease
 - Movement control protocol in case of an outbreak of *Salmonella Enteritidis* or *Salmonella Gallinarum / Pullorum*
 - Contingency plan in the case of an outbreak of Notifiable Avian Influenza and
 - Are free of visible signs of disease at the time of catching

3. During hot weather, birds should be loaded and transported during the cooler parts of day either in the early morning, late afternoon or at night.

4. The birds should not be deprived of feed and water before transport. During the transport phase the birds must not be without food or water for more than an absolute maximum of 24 hours measured from the time of last feeding / drinking to placement in the retail live bird seller’s lairage with accessible feed and water. This condition must be applied with discretion as the welfare implications of handling birds immediately post feeding must also be considered.

5. The birds are to be transported in clean and sanitised standard size crates (770mm long, 500mm wide, 300mm high), in trolleys or in containers that qualify for use in terms of the relevant part of SAPA’s Code of Practice. This applies to both the producer and the live bird buyer. Live bird sellers should not allow the loading of birds into damaged or otherwise unsuitable containers and are also responsible to ensure that stocking densities do not exceed the guideline limits.

6. The number of birds per standard size crate should not exceed 6 broiler breeder birds and 10 layer birds. During hot weather the number should be reduced to 5 for broiler breeders and 9 for layer birds. If other containers are used a similar stocking density should be applied.

7. Birds are to be treated with respect and dignity.

8. Birds injured on the farm must be killed humanely, cervical dislocation being an acceptable practice, conditional to the farm having staff competent to carry out the procedure. Any birds injured during transport may not be sold but must be humanely disposed of.

9. Birds must be caught individually. Birds will only be handled by their legs and not any other part of the body. Not more than 4 hens may be carried per person at any one time.
10. The legs of the birds will not be tied as a measure of restraint when sold by any of the live bird sellers, live bird buyers or the retail live bird sellers.

11. The onus is on the live bird buyer to insist on healthy birds and not accept any visibly sick (or injured) birds.

12. The live bird buyer must ensure that the containers are properly secured on the vehicle before it leaves the premises and ensure the birds cannot escape from crates/containers during transport.

13. The birds must be taken to a lairage where food, water and shelter is provided or to an abattoir.

14. All birds must be kept in similar conditions to those in which they lived their productive lives i.e. floor based birds must be kept on floor systems and caged birds must be kept in cages. If held for longer than 24 hours in a facility, broiler breeders must be allowed free movement in a pen large enough for the purpose, this being defined as 6 birds/ m² (ca. 27kg/m²). If layer hens are to be held for longer than 24 hours in a facility they should be kept in cages complying with the SAPA Code of Practice specifications (currently 450cm²/bird floor space).

15. When abnormal rates of mortality occur after receipt of birds, the local State Veterinarian, or the Poultry Reference Centre at the Faculty of Veterinary Science, Onderstepoort or a consulting veterinarian should be requested to investigate the cause of the mortalities and to report to the original seller as well as the buyer.

16. All mortalities should be disposed of in line with local health regulations.

17. No mortalities will be sold or made available for human consumption.

18. At lairages instant decapitation (or cervical dislocation if competent staff are on site) is accepted as a means of culling injured or sick birds.
DECLARATION WITH REGARD TO LIVE BIRD SALES

We hereby affirm, that at the time of catching, the flock from which the live birds to which this declaration pertains:

1) Were free of visible signs of disease and no abnormal mortalities have been reported in the flock of origin in the preceding 30 days.
2) Have been tested for notifiable Salmonellae according to the “Salmonella Movement Protocols” and complies with the requirements in the protocol.
3) Have been tested for notifiable Avian Influenza according to the “Contingency Plan in the case of an outbreak of notifiable avian influenza (NAI)” and complies with the requirements in the document.
4) Have been tested for Newcastle Disease according to the “Movement Control Protocol in case of Newcastle disease” and complies with the requirements in the protocol.
5) Have been handled in accordance with the current SAPA Code of Practice for Live Bird Sales.

Date & time of feed withdrawal:

Date & time of water withdrawal:

Date & time of departure from farm of origin:

SELLER’S DETAILS

Type of stock: Broiler breeders / Broilers/ Layer breeders/ Spent layer birds

(strike through whichever is not applicable)

House of origin:

Site of origin:

Farm of origin:

Magisterial district:

Responsible person:

Contact details: (tel / cellphone number) Signature: ……………………………………………………

BUYER’S DETAILS

Destination:

Magisterial district:

Responsible person: Signature: ……………………………………………………

Biosecurity in all poultry operations is of the utmost importance to ensure healthy flocks perform according to the required standards.

People movement is one of the main means of transmitting disease between flocks or farms. There are different aspects of biosecurity relating to people movement in poultry operations including physical biosecurity and procedural biosecurity.

- Geographical situation and lay-out of poultry operations.
- Restricted admission (e.g. functional fence with gates that can be locked, access control, visitors allowed only on appointment).
- Transit facilities (e.g. at the office) where private clothes and foot wear are exchanged for farm clothes and foot wear, reduce the risk of diseases being carried onto the farm on clothing or shoes.
- Shower facilities must provide effective separation between the “private clothes area” and the “site clothes area”
- Leave watches cell phones etc. outside the site.
- Spectacles must be disinfected.
- If vehicles are not disinfected, it must be left at a safe parking area a distance away from the poultry houses.
- Managers/visitors/service personnel should preferably restrict themselves to only one farm per day. The generally accepted practice of moving between flocks in a sequence from young to old or from healthy to sick unfortunately presents some risk as well. (Young birds may be infected with infectious agents not present in older birds; clinically healthy birds may be asymptomatic carriers of disease) However, moving in this sequence is undoubtedly better than moving at random
- Golden Rule: Restrict visitors to the absolute minimum.
- Unfortunately it is sometimes inevitable that visitors (e.g. Veterinarians, technicians, electricians etc.) have to visit more than one site per day. In these instances they must preferably shower in and out at every site. They must work in a young-to-old and/or healthy-to-sick sequence. NOBODY should be allowed to visit a healthy site after they have been to a diseased site.
- Foot wear disinfection or changeover of foot wear should be in place where required.

The people movement matrix can be used as a guideline to manage people movement between poultry and poultry related operations to minimise the risk of disease transmission by people.
<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>GP Quarantine</th>
<th>GP Rearing</th>
<th>GP Laying</th>
<th>GP Hatchery</th>
<th>Breeder Hatcheries</th>
<th>Breeder Rearing</th>
<th>Breeder Laying</th>
<th>Broilers / Pullet Rearing</th>
<th>Commercial Layers</th>
<th>Processing plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP Quarantine</td>
<td>GP Quarantine</td>
<td>2 x 24 hrs</td>
</tr>
<tr>
<td>GP Rearing</td>
<td>GP Rearing</td>
<td>Next day</td>
<td>Next day</td>
<td>Next day</td>
<td>Same day</td>
<td>Next day</td>
<td>Next day</td>
<td>Next day</td>
<td>Next day</td>
<td>Next day</td>
<td>Same day</td>
</tr>
<tr>
<td>GP Laying</td>
<td>GP Laying</td>
<td>2 x 24 hrs</td>
<td>2 x 24 hrs</td>
<td>Next day</td>
<td>Same day</td>
<td>Next day</td>
<td>Next day</td>
<td>Next day</td>
<td>Next day</td>
<td>Next day</td>
<td>Same day</td>
</tr>
<tr>
<td>GP Hatchery</td>
<td>GP Hatchery</td>
<td>2 x 24 hrs</td>
<td>2 x 24 hrs</td>
<td>Next day</td>
<td>Same day</td>
<td>Next day</td>
<td>Next day</td>
<td>Next day</td>
<td>Next day</td>
<td>Next day</td>
<td>Same day</td>
</tr>
<tr>
<td>Outside company: Poultry/Hatchery/Processing</td>
<td>Outside company: Poultry/Hatchery/Processing</td>
<td>4 x 24 hrs</td>
<td>4 x 24 hrs</td>
<td>4 x 24 hrs</td>
<td>4 x 24 hrs</td>
<td>2 x 24 hrs</td>
<td>2 x 24 hrs</td>
<td>2 x 24 hrs</td>
<td>Next day</td>
<td>Next day</td>
<td>Same day</td>
</tr>
<tr>
<td>Feed Mills</td>
<td>Feed Mills</td>
<td>4 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>2 x 24 hrs</td>
<td>2 x 24 hrs</td>
<td>2 x 24 hrs</td>
<td>Next day</td>
<td>Next day</td>
<td>Same day</td>
</tr>
<tr>
<td>Breeder Rearing (Young to Old)</td>
<td>Breeder Rearing (Young to Old)</td>
<td>4 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>Same day</td>
<td>Same day</td>
<td>Same day</td>
<td>Next day</td>
<td>Next day</td>
<td>Same day</td>
</tr>
<tr>
<td>Breeder Laying (Young to Old)</td>
<td>Breeder Laying (Young to Old)</td>
<td>4 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>Same day</td>
<td>Next day</td>
<td>Same day</td>
<td>Next day</td>
<td>Next day</td>
<td>Same day</td>
</tr>
<tr>
<td>Brooders/Hatcheries</td>
<td>Brooders/Hatcheries</td>
<td>4 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>Same day</td>
<td>Next day</td>
<td>(to known positive sites)</td>
<td>Same day</td>
<td>Same day</td>
<td></td>
</tr>
<tr>
<td>Broilers/Pullet Rearing</td>
<td>Broilers/Pullet Rearing</td>
<td>4 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>Next day (or same day with Veterinary approval)</td>
<td>2 x 24 hrs</td>
<td>2 x 24 hrs</td>
<td>Same day (Young to Old, Healthy to Old)</td>
<td>Next day</td>
<td>Same day</td>
</tr>
<tr>
<td>Commercial Layers</td>
<td>Commercial Layers</td>
<td>4 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>Next day (or same day with Veterinary approval)</td>
<td>2 x 24 hrs</td>
<td>2 x 24 hrs</td>
<td>Next day</td>
<td>Same day</td>
<td>Same day</td>
</tr>
<tr>
<td>Processing plants</td>
<td>Processing plants</td>
<td>4 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>3 x 24 hrs</td>
<td>2 x 24 hrs</td>
<td>Same day</td>
</tr>
<tr>
<td>From any disease positive site</td>
<td>From any disease positive site</td>
<td>5 x 24 hrs</td>
<td>5 x 24 hrs</td>
<td>5 x 24 hrs</td>
<td>5 x 24 hrs</td>
<td>Next day plus 2 x 24 hrs (Own farm hatchery 1x16 hours)</td>
<td>Next day plus 2 x 24 hrs</td>
<td>Next day plus 2 x 24 hrs</td>
<td>Next day plus 2 x 24 hrs</td>
<td>Next day plus 1 x 24 hrs</td>
<td>Same day</td>
</tr>
</tbody>
</table>
8 Appendix 3

Judicious Use of Antimicrobials in Poultry Production

INTRODUCTION

The use of drugs in poultry is fundamental to poultry health and well-being. Antimicrobials are needed for the relief of pain and suffering in animals. For poultry, the gains that have been made in food production capacity would not have been possible without the ability for reliable drugs to contain the threat of disease to birds. The World Health Organization stated, "Antimicrobials are vital medicines for the treatment of bacterial infections in both humans and animals. Antimicrobials have also proved to be important for sustainable livestock production and for the control of animal infections that could be passed on to humans." The benefit to human health in the proper use of antibiotics in food animals is related to the ability for these drugs to combat infectious bacteria that can be transferred to humans by either direct contact with the sick animal, consumption of food contaminated with pathogens from animals, or proliferation into the environment. However, the use of antimicrobials in food animals is not without risks.

Resistance to antimicrobials existed even before antimicrobials were used. The vast majority of drug-resistant organisms have however emerged as a result of genetic changes, acquired through mutation or transfer of genetic material during the life of the microorganisms, and subsequent selection processes. Resistance can also develop as a result of transfer of genetic material between bacteria. Resistance depends on different mechanisms and more than one mechanism may operate for the same antimicrobial. Microorganisms resistant to a certain antimicrobial may also be resistant to other antimicrobials that share a mechanism of action or attachment. Such relationships, known as cross-resistance, exist mainly between agents that are closely related chemically, but may also exist between unrelated chemicals. Microorganisms may be resistant to several unrelated antimicrobials. Use of one such antimicrobial will therefore also select for resistance to the other antimicrobials.

JUDICIOUS USE

Whenever poultry or human host is exposed to antimicrobials, there will be some degree of selection for a resistant bacterial population. Selection will depend upon the type of antimicrobial used, the number of individuals treated, the dosage regimen, and the duration of treatment. Therefore, it is vital to limit therapeutic antimicrobial use in animals and humans to those situations where they are needed.

The South African Poultry Association shares the concerns of the public, governmental departments, the South African Veterinary Association and public health community regarding the broad issue of antimicrobial resistance and specifically the potential risk of resistance developing in poultry with subsequent transfer to humans. Because of that concern and to maintain the long-term effectiveness of antimicrobials for poultry and human use and to increase the possibility of future antimicrobial drug approvals for the treatment of poultry, the South African Poultry association committed to judicious use of antimicrobials by the poultry industry for the prevention, control, and treatment of poultry diseases to ensure safe food for humans and better welfare for
When the decision is reached to use antimicrobials as growth promoters or for therapy, it should be prescribed by veterinarians who should strive to optimize therapeutic efficacy and minimize resistance to antimicrobials to protect public and poultry health.

Judicious use of antimicrobials is an integral part of good farming practice and should be applied in the poultry industry. It is an attitude to maximize therapeutic efficacy and minimize selection of resistant microorganisms. Judicious use principles are a guide for optimal use of antimicrobials. They should not be interpreted so restrictively as to replace the professional judgment of veterinary practitioners or to compromise poultry health or welfare. In all cases, poultry should receive prompt and effective treatment as deemed necessary by the prescribing or supervising veterinarian.

Judicious Use Principles for Poultry

Preventive strategies, such as appropriate husbandry and hygiene, routine health monitoring, and immunization, should be emphasized.

The foundation of the success in the poultry industry is through disease prevention management. Farms utilizing all-in-all-out production minimize the presence of multiple ages of flocks on farms to help in disease prevention. Biosecurity programs in place on poultry farms prevent the introduction of diseases. The use of shower/transit facilities and dedicated protective clothing prevents the introduction and spread of disease within and between farms. Preventative disease programs based on vaccination strategies reduce disease outbreaks in poultry. The poultry industry is the leader in novel vaccination procedures for vaccination of large numbers of poultry. Breeder, layer and broiler flocks are monitored for protective response to vaccinations. Serological monitoring of disease exposure forms the basis of strategic vaccination programs.

Other therapeutic options should be considered prior to antimicrobial therapy.

The poultry industry approaches the treatment of diseases with antimicrobial agents very seriously. Because of the cost of disease treatment with antimicrobials, therapeutic antimicrobial intervention is used only as a tool to treat active disease. Management adjustments are made when disease outbreaks occur by reacting to environmental temperature, ventilation, and litter moisture to minimize the impact of any disease condition in flocks. Supportive therapy with vitamins and electrolytes are utilized in some cases of disease outbreaks. All of the above strategies help in preventing the use of antimicrobials for treatment.

Judicious use of antimicrobials, when under the direction of a veterinarian, should meet all requirements of a valid veterinarian-client-patient relationship.

Poultry veterinarians, in integrated companies or contracted to poultry operations, closely monitor antimicrobial use in their poultry flocks. They maintain close contact with service technicians and managers related to the use of antimicrobials. Veterinarians are involved in the training of all individuals that will ultimately be following veterinary directions for antimicrobial use. Antimicrobials are used always under the direction and knowledge of the company veterinarian or
veterinary consultant.

Prescription (Medicines and Related Substances Control Act, no. 101 of 1965) use of antimicrobials.

Veterinarians in integrated poultry companies or contracted to poultry operations are responsible for the prescription and supervision of the use of these products in the poultry industry.

Extra label or compounded antimicrobial therapy must be prescribed only in accordance with the Veterinary and Para-veterinary professions Act, no. 19 of 1982, Medicines and Related Substances Control Act, no. 101 of 1965 and Pharmacy Act, no. 35 of 1974 with their relevant regulations.

Veterinarians in integrated poultry companies or contracted to poultry operations strive to use antimicrobials at labeled indications and dosage. With the abuse of antimicrobials, especially those registered under Act 36 of 1947, resistance developed to many of the products, which from time to time necessitates the extra label use of other registered products or for products to be compounded to treat specific disease problems in specific flocks. When prescribing extra labeler compounded antimicrobials, it is performed in compliance with the relevant acts and guidelines.

Over The Counter – (OTC) (FERTILIZERS, FARM FEEDS, AGRICULTURAL REMEDIES AND STOCKREMEDIES Act 36 of 1947) antimicrobials and feed additives must be applied according to the indications, dosage and withdrawal periods specified by the registration holder.

Feed additives and certain in feed as well as water medication are available over the counter in South Africa. The use of these products is not by law under veterinary supervision which led to the abuse of certain antimicrobials with resultant development of resistance to the active pharmaceutical compounds. It is therefore of the utmost importance that the poultry industry uses these products in a responsible way.

Antimicrobials considered important in treating refractory infections in human or veterinary medicine should be used in poultry only after careful review and reasonable justification. Consider using other antimicrobials for initial therapy.

SAPA recognize the importance of antimicrobial resistance in both human and veterinary medicine. Important antimicrobials used in both poultry and humans are held in reserve to minimize the rate of resistance development. Antimicrobials such as the quinolone-group should be held in reserve for the treatment of bacterial disease refractory to other antimicrobials.

Utilize culture and susceptibility results to aid in the selection of antimicrobials when clinically relevant.

Before antimicrobial therapy is initiated, based on mortality and morbidity, typically affected birds are euthanized and samples taken for bacterial culture and susceptibility testing (either antibiograms or Minimum Inhibitory Concentration –MIC). This is common practice in the poultry
industry today. The poultry veterinarian uses this information to make informed decisions regarding the appropriate antimicrobial therapy to be initiated. This information is kept as part of the flock and farm history as information to determine changes in antimicrobial susceptibility patterns on farms.

Therapeutic antimicrobial use should be confined to appropriate clinical indications. Inappropriate uses such as for uncomplicated viral infections should be avoided.

Viral, fungal and other non-bacterial infections are not treated in poultry with antimicrobials. Veterinarians pay special attention to disease outbreaks to determine if, and when antimicrobial therapy is warranted. Every effort is made to address disease outbreaks with other disease management strategies prior to the initiation of antimicrobial therapy. Mortality and morbidity are closely monitored; diagnostic evaluations are performed to confirm bacterial involvement prior to antimicrobial therapy.

Therapeutic exposure to antimicrobials should be minimized by treating only for as long as needed for the desired clinical response.

Due to the cost of antimicrobial use in poultry, veterinarians and service technicians closely monitor antimicrobial treatments to minimize antimicrobial therapeutic exposure in flocks. Flocks are treated for the desired clinical response avoiding prolonged use of antimicrobials. Morbidity and mortality are used to base clinical judgments as to duration of therapy.

Limit therapeutic antimicrobial treatment to ill or at risk animals, treating the fewest animals indicated.

In population medicine involving flocks, it is recognized that in a disease outbreak, all birds are not infected at the same time with the disease to which antimicrobial therapy is warranted. However, birds in the same house are "at risk" to the same primary disease that often results in secondary bacterial infections. Only birds within the same house ill or at risk are treated. Adjacent houses, not clinically affected with disease, are not treated. If therapeutic antimicrobial intervention isn't cost effective and a low number of birds are infected per house, the cost of treatment will usually dictate that no antibiotics be used at all.

Minimize environmental contamination with antimicrobials whenever possible.

Every effort is made to avoid environmental contamination with antimicrobials. The cost of antibiotics generally ensures that the antimicrobial be used specifically in the diseased flock and not introduced into the environment unnecessarily.

Accurate records of treatment and outcome should be used to evaluate therapeutic regimens.

Record keeping is an integral part of the integrated poultry industry. Production records including medication costs, evaluation and outcome are kept and placed in the history of the farm for future reference in determining any changing antimicrobial susceptibility patterns.